# Population Exposures to Ethylene: A Literature Review (and Modeling Exercise)

Dave Morgott Dennis McNally Lower Olefins Symposium November 5, 2014

Slides Prepared for the 2014 Symposium on Understanding the Health Risks of Lower Olefins

# Overview

#### Goal

To conduct a preliminary assessment of inhalation exposure potential in human populations with a specific focus source contribution

Task 1 – evaluate available literature information

Task 2 – conduct preliminary modeling estimates of industrial emissions to ambient concentrations

# Inhalation Exposure Determination

General approaches to exposure assessment

- 1. Direct measurement of the personal exposure for an appropriate sample of the population.
- 2. Indirect measurement using local ambient air concentrations and general activity patterns in specific microenvironments.
- 3. Mathematical models using emission and air speed information.
- 4. Biomonitoring using blood, urine, or exhaled air.

# Sources of Ethylene Emissions

Biogenic

- Vegetation
- Leaf litter
- Seawater
- Soil
- Marine sediment

**Biomass burning** 

- Forest fires
- Crop residue burning

Anthropogenic

- Olefin plants
- Refineries
- Traffic
- Incineration



# Occupational Exposure Levels<sup>1</sup>

| Facility                               | Sample<br>type | Mean<br>(ppb) | Range<br>(ppb) | Author                     |
|----------------------------------------|----------------|---------------|----------------|----------------------------|
| coke oven<br>battery                   | personal       | 231           | 10.8 - 1288    | Lin et al., 2007           |
| green produce<br>distributor           | area           |               | 80 - 1412      | Wills et al.,<br>2000      |
| olefin<br>Plant                        | personal       | 2600          | 50 - 49000     | Martin &<br>Caldwell, 2004 |
| petrochemical<br>plant                 | area           |               | 11 - 193       | Lin et al., 2004           |
| horticultural<br>industry <sup>2</sup> | area           |               | 0 - 133000     | Fraser et al,<br>1999      |

<sup>1</sup> ACGIH 8-hr TLV of 200 ppm (200,000 ppb)

<sup>2</sup> operations included growers, wholesalers, retailers and processors of fruits, vegetables and flowers

#### Ethylene Levels Associated with the Storage and Distribution of Consumer Produce



Rees et al., 2011

# Levels Typically Observed in Different Environments

| Environment             | Range<br>(ppb) |
|-------------------------|----------------|
| clean air<br>background | 0.1 - 0.2      |
| rural                   | 0.4 - 0.7      |
| urban background        | 0.3 - 1.5      |
| indoor air              | 2 - 10         |
| busy roadway            | 5 - 15         |
| industrial<br>fenceline | 10 - 100       |
| secondhand<br>smoke     | 50 - 100       |
| occupational            | 100 - 50000    |

Measurements compiled from a review published information

#### Sources and Airborne Concentrations of Ethylene

| Sample type                    | Conc (ppb) | Author                |
|--------------------------------|------------|-----------------------|
| Waste incinerator flue<br>gas  | 5600       | Carotti et al., 1972  |
| Above land fill                | 2700       | Bogner et al., 2010   |
| Second hand smoke              | 80         | Persson et al., 1988  |
| Expire air                     | 23         | Conkle et al., 1975   |
| Home refrigerator <sup>1</sup> | 100        | Wills et al., 2000    |
| Forest fire plume              | 37         | Rinsland et al., 2005 |
| Incense burning                | 17,000     | Yang et al., 2007     |
| Kitchen using LPG              | 113        | Huang et al., 2011    |
| Charcoal briquette<br>smoke    | 3500       | Olsson, 2003          |
| Below snow pack                | 0.16       | Swanson et al., 2002  |
| Above soybean field            | 30.3       | Kang et al., 2004     |

<sup>1</sup>ranged as high as 590 ppb

## **Population Exposures to Ethylene**

Far-field sources

- sources located at distances that are many meters or kilometers away from where a person spends time or performs an activity
- may contribute to population exposure depending on overlap between activity
- industrial releases and biomass burning

Near-field sources

- sources located within a few meters of a location where a person spends time
- always contributes to the overall level of exposure
- motor vehicle emissions, cooking, building products off-gassing, consumer products

#### Personal Exposures to Ethylene

Personal exposures to ethylene in commuters within the city of Dublin, Ireland (McNabola et al., 2008)<sup>1</sup>

| Statistic | Car<br>(ppb) | Bicycle<br>(ppb) | Bus<br>(ppb) | Pedestrian<br>(ppb) |
|-----------|--------------|------------------|--------------|---------------------|
| mean      | 7.32         | 8.83             | 8.46         | 6.18                |
| SD        | 9.67         | 4.55             | 4.07         | 4.50                |
| Ν         | 45           | 42               | 27           | 37                  |

<sup>1</sup>three mile route through heavy traffic

# Indoor/Outdoor Ratios for Ethylene

| Location               | Indoor<br>conc.<br>(ppb) | Outdoor<br>conc.<br>(ppb) | I/O<br>ratio | Author                   |
|------------------------|--------------------------|---------------------------|--------------|--------------------------|
| Rio Grand<br>Valley    | 5.41                     | 1.75                      | 3.86         | Mukurjee et al.,<br>1997 |
| Regina, Canada         | 3.32                     | 1.31                      | 2.53         | Health Canada,<br>2010   |
| Windsor,<br>Canada     | 5.24                     | 2.79                      | 1.87         | Health Canada,<br>2010   |
| Halifax,<br>Canada     | 2.44                     | 0.80                      | 3.05         | Health Canada,<br>2009   |
| Nepal                  | 245                      | 1.05                      | 233          | Davidson et al.,<br>1986 |
| Beijing, China         | 10.46                    | 6.75                      | 1.55         | Duan et al.,<br>2014     |
| Boise, ID <sup>1</sup> | 13.5                     | 12.5                      | 1.08         | Lewis, 1991              |

<sup>1</sup>No obvious indoor sources

# Personal Population Exposures to Ethylene

| Location<br>(season) | Sample<br>size | Mean<br>(ppb) | Range (ppb)   |
|----------------------|----------------|---------------|---------------|
| personal<br>(summer) | 207            | 5.01          | 1.12 - 105.00 |
| personal (winter)    | 119            | 5.73          | 0.94 - 57.61  |
| indoor (summer)      | 217            | 5.03          | 0.76 - 117.00 |
| outdoor (summer)     | 216            | 1.30          | 0.16 - 3.89   |
| indoor (winter)      | 91             | 5.17          | 0.24 - 63.12  |
| outdoor (winter)     | 126            | 2.82          | 0.66 - 10.21  |

24-hr samples over two year period 100 participants Children and Adults

Health Canada, 2010

# **Findings from HEATS**

- 27 adults surveyed in two areas in Houston
  - Aldine
  - Houston ship channel
- personal, indoor, and outdoor samples collected for 14 air toxics
- outdoor fixed-site measurements higher in the ship channel than in Aldine
- indoor/outdoor ratios generally ranged from 1.7 - 6.7 (9 of 14)
- personal exposures higher than residential or outdoor exposures in both study areas
- personal exposures in the two areas were similar and did not reflect differences in the type and density of point source emissions or the ambient concentrations at the two sites

Morandi et al., 2009

# Time-Activity Patterns for Adults in the US



Leech et al., 2002

#### Indoor Sources of Ethylene Exposure

- house plants
- cooking oils
- fruits and vegetables
- ETS
- vehicle in attached garage
- cooking and heating fuels
- wood burning fireplace

### Temporal Trends in Ambient Ethylene

Ethylene measurements at the Deer Park monitoring site located near the Houston Ship Channel



TCEQ. AutoGC Data by Day by Site (all parameters). Accessed 2014. Texas Commission on Environmental Quality

### Conclusions from the Literature Review

- Diverse number of sources both indoors and outdoors
- Occupational exposures higher than population exposures but still below applicable limits
- High spatial and temporal differences in ambient air levels
- Indoor air levels generally higher than outdoor levels
- Personal exposures not well correlated with those found outdoors
- Relative contribution from industrial emissions and traffic difficult to exactly determine but evidence suggest that indoor sources far more important
- Microenvironmental modeling using time activityanalysis may yield useful insight on the contributions from specific sources

# Motivation

 Provide a screening examination at monthly average ethylene concentrations in the Houston/Galveston/Brazoria area

# Modeling Approach

- CAMx 6.1
- 36km/12km/4km Nested Application
- Ozone Season 2010 Modeling Platform
- Impacts Simulated Two Ways
  - Zero-Out: Removed industrial ethylene in 4km domain and reran model (Removing emissions changes reactivity)
  - Reactive Tracer (RTRAC): Run model with a reactive tracer to represent ethylene. Accounts for ethylene reacting with ozone, OH and NO<sub>3</sub>.

# **Modeling Domain**



# Caveats

- Used existing CAMx platform for extended ozone season only (May-Oct. 18)
- This model platform has not been evaluated against ethylene observations
- CAMx model has artificial dilution of emissions to 16 km<sup>2</sup> grid volume
- Results must be viewed as "screening" level

# Emissions

- EPA's National Emissions Inventory (NEI) for 2008,2011
- Continuous Emissions Monitor (CEM) data where available
- Wildfires EPA 2010 Preformatted for SMOKE
- On-road Mobile MOVES2010b
- Non-road Mobile NMIM
- Biogenics MEGAN

#### Industrial Ethylene Emissions Full Domain



Peak: 622 tpy Grid Total: 5,435 tpy

# Modeling Results (May)





# Modeling Results (June)



# Modeling Results (June Conc.)



# Modeling Results (July)



#### Modeling Results (July Conc.) 400.0 -1004.0 32.0 74 pm Industrial Contribution (ppb) RTRAC Peak: 8.89 ppb 40 400.0 - 1004.0 3.0 20 -1300.00 92 20 40 60 0.5 2.5 3.5 1.0 1.5 2.0 3.0 4.0Zero-Out 20 Peak: 8.88 ppb 99th Percentile: 1.06 ppb Median: 0.04 ppb 0 -1300.092 20 4060 0.51.52.0 2.5 3.0 3.5 4.01.0

# Modeling Results (August)





# **Modeling Results (September**





# Observations

- Industrial ethylene impacts > 0.5 ppb are fairly localized in industrial areas
- Zero-out and RTRAC results agree very closely
- Significant month to month variation in concentrations
  - Likely both meteorologically and emissions driven
- Impact distributions very long tailed
- Industrial contribution exceeds 20% fairly close to industrial source regions